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Whether tethered to an Ethernet
cable or connected through wireless technol-
ogy, computer systems now operate in an
environment of near ubiquitous connectivi-
ty. The availability of always-on communica-
tion has created countless opportunities for
Web-based businesses, information sharing,
and coordination, but it has also created new
opportunities for those who seek to illegally
disrupt, subvert, or attack these activities.
Every day, additional critical data becomes
accessible over the network, and any publicly
accessible system on the Internet is subject to
more than one break-in attempt per day.
Because we are all increasingly at risk, interest
in combating these attacks at every level is
widespread, from end hosts and network taps
to edge and core routers. Intrusion detection
and prevention has proven highly effective at
finding and blocking known attacks in the
network before the end host even encounters
them, but making such protection scalable

entails significant computational challenges.
Intrusion detection systems must scan every
byte of every packet to find the signatures of
known attacks, and this requires very-high-
throughput methods for string matching.

To address these concerns, we take an
approach that relies on a simple yet powerful
special-purpose architecture working in con-
junction with novel string-matching algo-
rithms specially optimized for this architecture.
The key to achieving both high performance
and high efficiency is to build many tiny state
machines, each of which searches for a portion
of the rules and a portion of each rule’s bits.
Our new algorithms are specifically tailored
toward implementation in an architecture
built up as an array of small memory tiles, and
we developed the software and the architec-
ture together. This article summarizes the key
findings from a longer article.1 Our efforts
result in a device that maintains tight worst-
case bounds on performance, is updatable with
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new rules without interrupting operation, has
configurations generated in seconds instead of
hours, and is 10 times more efficient than
existing best-known solutions. In particular
we describe

• a novel configurable string-matching
architecture that can store the entire
Snort rule set—about 1,000 strings that
are 12 bytes apiece, on average—in only
0.4 Mbytes and can operate at upward of
10 Gbps per instance;

• string-matching algorithms that operate
through the conjunction of many small
state machines working in unison, reduc-
ing the number of required out edges
from 256 to as few as two; and

• a rule compiler that takes only seconds
to partition and bit split a finite-state
machine representation of the strings
into a set of small implementable state
transition tables used to program our
architecture.

Detecting intrusions
Given the importance of protecting infor-

mation and services, the security community
has put much effort into detecting and thwart-
ing attacks in the network.2,3 Intrusion detec-
tion systems and intrusion prevention systems
have emerged as two of the most promising
ways to protect the network, and predictions
show the market for such systems growing to
$918.9 million by the end of 2007.4

Network-based intrusion detection systems
either attempt to find examples of misuse or
anomalies. Both approaches require sensors that
perform real-time monitoring of network pack-
ets, either by comparing network traffic against
a signature database or by finding out-of-the-
ordinary behavior and triggering intrusion
alarms. A higher-level interface provides man-
agement software to configure, log, and display
alarms generated by lower-level processing.
These two parts, working in concert, alert
administrators to suspicious activities, keep logs
to aid in forensics, and assist in the detection of
new worms and denial-of-service attacks. The
lowest level, where data is actually inspected, is
where the computational challenge lies.

To define suspicious activities, most modern
network intrusion detection and prevention sys-
tems rely on a set of rules applied to matching

packets. At minimum, a rule consists of a type
of packet to search, a string of content to match,
a location at which to search for that string, and
an associated action to take if the search meets
all of the rule’s conditions. An example rule
might match packets that look like a known
buffer overflow exploit in a Web server. The cor-
responding action might be to log the packet
information and alert the administrator. Rules
take many forms, but frequently their heart con-
sists of strings to be matched anywhere in a
packet’s payload. The problem is that for accu-
rate detection, we must be able to search every
byte of every packet for a potential match from
a large set of strings. For example, the Snort rule
set has on the order of 1,000 strings with an
average length of about 12 bytes (http://www.
windowsitpro.com/WindowsSecurity/
Article/ArticleID/39360/39360.html). In addi-
tion to raw processing speed, a string-matching
engine must have bounded performance in the
worst case to withstand a performance-based
attack.5 Because rule sets are constantly grow-
ing and changing as new threats emerge, a
successful design must be quickly and auto-
matically updatable, all while the system main-
tains continuous operation.

String matching with state machines
Familiar and efficient algorithms for string

matching, such as Boyer-Moore,6 are designed
to find a single string in a long input. Our
problem is slightly different: We’re searching
for one of a set of strings from the input
stream. Although simply performing multi-
ple passes of a standard one-string matching
algorithm would be functionally correct, it
doesn’t scale to handle the thousands of strings
that modern intrusion detection systems look
for. Instead, it is possible to fold the set of
strings we’re looking for together into a sin-
gle large state machine. This method, the
Aho-Corasick algorithm,7 functions in the
fgrep utility as well as in some of the latest ver-
sions of the Snort network intrusion detec-
tion system.2 One of Aho-Corasick’s biggest
advantages is that it performs well even in the
worst case, making it impossible for an adver-
sary to construct a stream of packets that is
difficult or impossible to scan. At a high level,
our algorithm works by separating the set of
strings into groups and building a small state
machine for each group. Each state machine’s
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charge is to recognize a subset of the strings
from the rule set.

This approach results in two major con-
cerns. The first is that building a state machine
from any general regular expression can, in
the worst case, require an exponential num-
ber of states. We circumvent this problem by
exploiting the fact that the vast majority of
rules aren’t general regular expressions but, in
fact, are strings. For this proper and well-
defined subset of regular languages, the Aho-
Corasick algorithm requires only a linear
number of states.

Before describing the second concern, we
need to explain more about the nature of these
state machines.

Aho-Corasick algorithm
The essence of the Aho-Corasick algorithm

involves a preprocessing step that creates a
state machine that encodes all of the strings
to be searched. This preprocessing step gen-
erates the state machine in two stages. The
first stage assembles a tree of all the strings that

the search must identify in the input stream.
The tree’s root represents the state in which
no strings have been even partially matched.
The tree has a branching factor equal to the
number of symbols in the language. For the
Snort rules, this is a factor of 256, because
Snort can specify any valid byte as part of a
string. (This feature can serve to identify a par-
ticular 4-byte IP address, for example.) All the
strings are enumerated from this root node,
and any strings that share a common prefix
will share a set of parents in the tree.

Figure 1 shows how we construct one of these
state machines in two steps. First, the pre-
processor generates a tree from a set of target
strings (this example uses the strings “he”, “she”,
“his”, and “hers”). This lets us search for any
string as long as the staring point is state 0. The
second preprocessing step inserts failure edges
into the tree to handle the fact that any string
can start to appear at any time. For clarity, we
omit failure transitions back to state 0. When a
string match isn’t found, the suffix of one string
might match the prefix of another. Inserting fail-
ure edges lets us shortcut from a partial match
of one string to a partial match of another.

The advantage of this approach is that when
running, it requires only one pass through the
data and has excellent worst-case perfor-
mance: One state transition means one byte of
input has been searched. Ending up in state
that corresponds to a match (for example,
state 9) means the search algorithm has found
a string in the list (for example, “hers”). No
matter what the starting state is, the design
should always end up in state 9 when the tran-
sitions for h, e, r, and s are followed.

This addresses our first concern, but if we
aren’t careful we’ll have to support 256 possi-
ble edges (every possible byte will require
either a tree edge or a failure edge) on each
and every node in the state machine. This
results in a huge data structure that can be nei-
ther stored nor traversed efficiently.

A bit-split state machine
Although it’s possible to use the Aho-Cora-

sick state machines to search a stream of data
with just a constant amount of time required
per character, a real implementation requires
large amounts of storage and a dependent
memory reference for each character searched.
Storing each state as an array of 256 next
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Figure 1. In this multiple string-matching problem, the input is a set of
strings or patterns, S, and buffer b. The goal is to find every occurrence of
an element of S in b, with the constraint that b is a stream and only one
pass is allowed (a). The Aho-Corasick algorithm takes the set of all strings
and builds a state machine to find them one character at a time (b) and adds
failure edges to avoid backtracking (c). The state machine will recognize the
appearance of any of the search strings anywhere in the entire data stream.



pointers is wasteful. Furthermore, the num-
ber of next pointers that any given state needs
varies widely. Nodes near the root of the tree
need more than 200 next pointers, while
nodes near the leaves need only one or two.
We need a way to break this problem into a
set of smaller problems, each with more-reg-
ular behavior.

To solve this problem, we split each Aho-
Corasick state machine into a new set of eight
state machines. Each state machine is then
responsible for only one of an input charac-
ter’s eight bits.

This technique has three advantages:

• The split machines have exactly two pos-
sible next states (not a large and variable
number, as in the original design). This
is far easier to compact into a small
amount of memory.

• The eight state machines are loosely cou-
pled and can run independently (assum-
ing we can merge the results).

• The splitting technique will never result
in a blow-up of states for string match-
ing, and preprocessing can be complet-
ed in time linear with the number of
bytes in the rule set (on the order of tens
of seconds for the Snort rule set).

From state machine D, constructed with the
Aho-Corasick algorithm, our algorithm extracts
each bit of the 8-bit ASCII code to construct its
own binary state machine, a state machine
whose alphabet contains only 0 and 1. Let B0,
B1, … , B7 be these state machines (one per bit).
For each bit position i, we take the following
steps to build binary state machine Bi. Begin-
ning with the start state of D, we look at all of
the possible next states. We partition the next
states of D into two sets, those that come from
a transition with bit i set to 1 and those that
transition with bit i set to 0. These sets become
two new states in Bi. This process repeats until
we fill out all of the next states in the binary state
machine, in a process analogous to subset con-
struction (although our binary state machines
can never have more states than D). Each state
in Bi maps to one or more states in D. We’ve
described the details of the algorithm for split-
ting the state machines apart more fully in
another publication;1 in this article we focus on
how to run the bit-split machines and how to

efficiently implement them in our architecture.
Figure 2 shows how the binary state

machines work together to match any string
at any offset. Each state machine recognizes
only one input bit at a time. It’s still necessary
to store the mapping of output states in D to
all the states in the binary state machines.
Because each output state in D corresponds
to a string in the rule set, the mapping of out-
put states can be used to discover when a bina-
ry state machine has matched a string. A
resulting state in Bi is an accepting state if it
maps back to any of D’s accepting states. Fig-
ure 2 shows that the third state machine is
looking only at the stream of bits 100001000.
When it detects 001, it knows that it could be
seeing the bit-slice of the string “she.” When
it sees 0100, this could be the string “hers.”

Implementing the state machine from Fig-
ure 1 requires that each state have up to 256
possible next states, which means memory will
be required for each of 256 pointers for each
of the 10,000 or so states. Figure 2 illustrates
our proposed alternative.

Of course, simply knowing that 001 has
occurred at bit 3 is insufficient to identify the
string “she.” One-eighth of all possible three-
character sequences will have 001 for their
third bit. (If there are 2563 possible 3-byte
character sequences, 1283 of them will have
001 for their third bit.) In fact, many of the
other search strings could have 001 in bit 3.
To be certain of a match, we must consider all
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Figure 2. Bit-splitting the Aho-Corasick state machines. We must resolve
the problem of having too many possible out edges at each node (256 pos-
sible next bytes). Our solution is to build a set of finite-state machines
(FSMs) that look at just one or two of the bits of each byte at a time. Each of
these FSMs will output a list of potential matches. Only if all state machines
agree on the same potential match has an actual match occurred.



the potential matches of all the different state
machines. At first glance, this might seem like
a complicated operation, but it can be done
simply and efficiently.

Architectural implementation
Our architecture is hierarchical, in recog-

nition of the way the sets of strings are bro-
ken down. At the highest level is the full
device. Each full device holds the entire set of
search strings, and each cycle the device reads
in a character from an incoming packet and
computes the set of matches. Matches can be
reported after every byte or on a per-packet
basis after they have accumulated. To multi-
ply the throughput, we can replicate devices
and have one packet go to each device in a
load-balanced manner, but in this article we
concentrate on a single device.

Each device contains a set of rule modules.
The left side of Figure 3 shows how the rule
modules interact with one another. Each rule
module acts as a large state machine that reads
in bytes and outputs string match results.
Unlike in a scheme built around the recon-
figurable nature of field-programmable gate
arrays (FPGAs)8-14 which compile specialized
circuits from a set of rules, our approach can
take advantage of SRAM’s incredible density
to implement the search. The rule modules,
configured only through the loading of their
tables, are all structurally equivalent, and each
module holds a subset of the rule database. As
a packet flows through the system, each byte
of the packet is broadcast to all of the rule
modules, and each module checks the stream
for an occurrence of a rule in its rule set.
Throughput, not latency, is the primary con-
cern of our design; therefore, the broadcast
has limited overhead because it can be deeply
pipelined if necessary.

Our preprocessing method partitions the
full set of rules among the rule modules. The
partitioning method affects the total number
of states required in the machine and will
therefore affect the total amount of space
required for an efficient implementation. Our
previous paper more fully discussed how to
find an efficient partitioning.1 When a rule
module finds a match, it reports that match
to the device’s interface so that the intrusion
detection system can take the appropriate
actions. What happens inside each rule mod-

ule is what gives our approach both high effi-
ciency and high throughput.

Each rule module consists of a set of tiles.
The right side of Figure 3 shows the structure
of each and every tile in our design. Tiles,
when working together, are responsible for the
actual implementation of each binary state
machine that actually recognizes a string in
the input. As previously mentioned, each new
state machine essentially acts as a filter: If any
one binary state machine says that it is not a
match, then it is not a match. Only if all the
binary state machines agree can an actual
match be declared.

It turns out that a full set of eight binary
state machines, each searching for one bit at a
time, is not optimal, and there are several
choices for bit splitting. The original Aho-
Corasick machines had one machine with 256
possible next edges, while a binary machine
would require eight machines with two out
edges each. In fact, four machines, each with
four out edges, is space optimal for the sizes we
target.1 The idea of bit-splitting to four
machines is exactly the same as to eight
machines in that each machine looks at only
a slice of the input; however, in this case the
slice is two bits rather than one.

Each tile is essentially a table with a certain
number of entries (Figure 3 shows 256
entries), and each row in the table is a state.
Each state has a partial match vector and a cer-
tain number of next-state pointers, which
encode the state transitions (four possible next
states appear in Figure 3, and a different pair
of bits from the byte stream indexes each one).
The partial match vector is a bit vector that
indicates the potential for a match for every
rule for which the module is responsible. This
match vector stores the set of possible match-
es for a given state, as described in the previ-
ous section. If there are up to g rules mapped
to a rule module, then each state of each tile
will have a g-bit-long partial match vector. By
taking the AND of each partial match vector,
we can find a full match vector, which indi-
cates that all of the partial match vectors are in
agreement and that a true match for a partic-
ular rule has been found. By encoding the list
of possible matches as a bit vector, we can
determine the intersection of the sets with a
simple AND operation.

At the beginning of each packet, and before
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the device accepts any input characters, all tiles
need to be reset to start from state 0. On each
cycle, a module divides the input byte into
groups of bits (in the example, eight bits can be
divided into four groups of two). Each tile then
has its own group of bits and uses its own inter-
nal state to index a line in the memory tile.
The tile reads out the partial-match vector,
along with the set of possible state transitions
from the memory. It then uses the input bits
to select the next state for updating, and the
partial match vector goes to an AND unit
where it combines with the other partial match
vectors. Finally, the full device concatenates all
full match vectors from all modules, to indicate
which of the strings were matched.

Figure 4 shows an example of the four state
machines split from the Aho-Corasick state
machine in Figure 1, each of which has then
been mapped onto our architecture. Each of
these state machines is responsible for two bits
of an input byte. Figure 4 assumes “hxhe’’ is
used as an example input stream and shows
the transitions of all four of the state machines
with arrows, starting from state 0. At each
cycle each tile produces a partial match vec-

tor, and the module then outputs the logical
AND of these partial match vectors. In accor-
dance with the different requirements pre-
sented by various intrusion detection and
prevention systems, our architecture can be
configured to output matches only after an
entire packet is scanned, instead of after each
and every cycle.

Results and conclusions
Although we don’t provide detailed results

in this article, we do describe two key find-
ings from our earlier paper.1 Two main advan-
tages of the approach just described are
increased throughput and reduced area.
Because such scanning devices are often repli-
cated on chip, we cannot consider the impor-
tance of one without considering the other. A
full Aho-Corasick machine, even if it uses
minimally sized pointers for each of the 256
out edges, will require at least 3.7 Mbytes of
on-chip memory. With bit-split machines, we
can significantly reduce this requirement to
only 0.4 Mbytes. Our device’s performance is
really limited by the access time to one small
tile of memory, but even at 1 byte per cycle,
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the throughput is more than 10 Gbps. As for
performance density, we estimate that our
design will achieve an area efficiency of 321
characters/mm2 in 0.13-micron technology,
which is more than four times that of the best
FPGA-based designs. Our design’s perfor-
mance density is nearly 12 times that of the
best FPGA-based designs.

Although this article explored an applica-
tion-specific approach, the techniques we
developed and described would likely permit
the efficient mapping of string matching to
other tile-based architectures used in indus-
try. For example, Cho and Mangione-Smith
describe a technique for implementing state
machines on block RAMs in FPGAs.13 Con-
current with our work, Aldwairi et al. pro-
posed mapping state machines to on-chip
SRAM.14 Another example of where our opti-
mizations would be valuable is applications
mapped down to more general-purpose pro-
grammable-memory tiles.15

Increasing concerns about security will
almost certainly require computer systems
to change. Although network intrusion
detection and prevention systems are cer-
tainly not a silver bullet for the complex and
dynamic security problems today’s system
designers face, they do provide a powerful
tool. Because network intrusion detection
systems require no update or modification
to any of the systems they help protect, they
have grown rapidly in recent years, both in
computational power and rate of adoption.
The architecture and algorithm we describe
is small enough to be incorporated in exist-
ing network chips as a separate accelerator,
it is fast and efficient enough to keep up
with aggressive network speeds, and it sup-
ports always-on capability. To provide this
functionality, we rely on the combination of
a simple yet scalable special-purpose archi-
tecture working in tandem with a new spe-
cialized rule compiler that can extract
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bit-level parallelism from state-of-the-art
string-matching algorithms. M I C R O
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